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Abstract 

Two questions which have been independently studied 
(the distribution of colors in colored lattices and lattice 
preservation in derivative lattices) are in fact closely 
related. It is possible, for instance, to determine the 
distribution of colors in rows and nets by the 
lattice-preservation indices c r and cp as functions of row 
indices [uo, vo, Wo] and net indices (ho, ko, lo), respec- 
tively. A formula is also given for the number of classes 
of equivalent derivative lattices of a given index n. 

1. Introduction 

Recently two questions have been studied 
independently: 

(1) The distribution of colors among the lattice 
points or nodes in the rows and the nets of a colored 
lattice L c (Harker, 1978). 

(2) The preservation of the lattice nodes by the rows 
and the nets of a derivative lattice (sublattice) L'  of a 
lattice L (isomorphic subgroup of P1) (Billiet, 1979; 
Rolley-Le Coz & Billiet, 1980, 1981). 

* To whom all correspondence should be addressed. 
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In fact these questions are closely related. Every 
derivative lattice can be identified with a colored lattice 
L c and vice versa. We assign a single color to the nodes 
of the derivative lattice L ' ;  the cosets of L' ,  with respect 
to L, correspond to different colors. Every translation 
of the colored lattice L c by a vector of L' leaves the 
color distribution in the lattice L c unchanged, whereas a 
translation by an element of each of the eosets of L'  
corresponds to a certain color permutation, the same 
permutation for all members of a coset. The number n 
of distinct colors is equal to the index of L'  in L. 
Conversely, the nodes of L c with a single color define a 
derivative lattice L' .  

In this paper we combine our efforts to clarify such 
misunderstood points as the distribution of colored 
nodes as a function o f  the indices of rows and nets. For 
definitions and terminology, the reader is referred to the 
previous papers. 

2. Colored nodes and derivative lattices 

Let L be a three-dimensional lattice and L' a sublattice 
of L of finite index. Primitive unit cells (ao,bo,c o) of L 
and (a'o,b'o,c'o) of L'  may always be chosen in such a 
way that their vectors are related by the simple 
equations a' o = f a  o, b' o = fgb o, c' o = fghc o. Here f,  g and h 
are positive integers whose values are unique for a 
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given sublattice L '  of L, a n d f 3 g 2 h  = n. The integers f ,  
g and h do not define L '  uniquely; two or more distinct 
sublattices may correspond to the same triple ( f ,g ,h)  
[in theses cases, the choice of the primitive unit cell 
(ao, bo, co) will differ]. We define two sublattices of L to 
be equivalent if they correspond to the same triple. 

Consider two parallel rows or nets, I and II, of a 
colored lattice L c. Harker (1978) observed that 'either 
the colors in I are repeated on II in the same pattern or 
all the colors on II are different from those in I but form 
a pattern with the same abstract permutation group .... 
There are three possible types of colored lattices: (1) 
those in which all rows contain nodes of different 
colors - i.e. there are no rows of nodes of the same 
color; (2) those in which there are rows of nodes with 
the same color, but no nets of nodes colored all alike; 
and (3) those in which there are nets of nodes all 
colored the same.' The lattice L c is type 1 i f f  > 1. L c is 
type 2 if f =  1, g > 1. L c is type 3 if f =  g = 1, h > 1. 

We can easily relate these observations to the study 
of the preservation of rows and nets by a derivative 
lattice (Rolley-Le Coz & Billiet, 1980, 1981; Rolley-Le 
Coz, 1982). Let [Uo, Vo, W o] be the row indices of a 
family p of rows of L with respect to (ao, bo, co); the 
greatest common divisor (GCD) of u o, v 0 and w o is 1. 
We will denote the member of this family which 
contains the lattice-origin node by Po. Then: 

(~t) Every c~ node of P0 belongs to L ' ,  where c r = 
f g h / G C D ( g h , v o h ,  wo); c~ is called the preservation 
index of the family p. 

(fl) In the family p, one row out of n/c r is preserved 
by L '  in the same way as Po, i.e. is a copy of P0. The 
other rows contain no nodes of L' .  

The preservation of a family zc of nets of L by a 
derivative lattice L '  obeys similar rules. Let (ho, ko, lo) be 
the Miller indices of zt with respect to (ao, bo, co); 
GCD(ho,  ko, lo) = 1. Then: 

(a ')  One out of cp nodes of the net it 0 containing the 
lattice-origin node is preserved by L' ,  where cp = 

f 2g2h /GCD(ho ,kog ,  logh); c n is called the preservation 
index of the nets zt. 

( i f )  One out of n/cp nets zc is preserved by L '  in the 
same way as 7~0; the other nets contain no nodes of L' .  

In terms of the colored lattice L e, (ct) says that the 
row P0 contains nodes of exactly cp distinct colors, 
which repeat in cyclic order. Restating (fl) in terms of 
L c, we consider n/c~ successive rows. The first, P0, 
contains nodes of Cr colors, the second contains nodes 
of c r other colors, and so on. Similarly, (a ')  says that n o 
contains nodes of Cp colors, and ( i f)  says that in a 
sequence of n/Cp successive nets, each net contains cp 
different colors which are distinct from the colors of the 
other nets. 

From (1) and (~t) we see that if f >  1 then c r > f a n d  
Cp > f 2 g .  Thus c r > 1 and cp > 1. Therefore every row 
and every net contain more than one color. If f =  1 and 
g > 1, then c~ > 1 and cp > 1. Thus in lattices of type 2, 

the nodes of the rows with indices of the form u 0 = nx, 
v 0 = n2g , w 0 = nagh, where n 1, n2, n a are integers, have 
a single color (rows with other indices have nodes of 
more than one color). I f f  = g = 1, h > 1, then c r > 1 
and cp > 1. In this case again the indices of certain rows 
and nets can be chosen so that cr = 1 (u o = nl, v 0 = 
n2g, w 0 = n3gh; n 1, n 2, n 3 are integers) and c e = 1 (h 0 = 
n4h, ko = nsh, lo = n6; n4, ns, n6 are integers) and these 
rows and nets will contain nodes of a single color. 

The concept of lattice preservation may be extended 
to rows and hypernets of lattices of higher dimension d 
(Rolley-Le Coz, 1981) and applied to the colored 
lattices connected with them. Let us consider in 
dimension d a lattice L and a derivative lattice L' .  It is 
always possible to find a primitive unit cell (a~, a2, ..., 
ad) in L and a primitive unit (a~, a[, ..., a~) in L '  such 
that their vectors are simply related by equations a~ = 
f l a l ,  a'2 = f l  f2a2, .. . ,  a 'd=f l . f2  . . . faad ,  wherefl,f2, .. 
fd  are positive integers whose values are unique for a 
given family of equivalent sublattices o f L , f ~ f 2 "  d d-1 " " f a  
= n. The preservation index of a row family [u~, u 2, . . . ,  
u d] with GCD(ul ,  u2,.. . ,  Ud) = 1 is given by 

c r =  (f, f2 . . . fd ) [GCD(f2  f3 . . . fa ,  u 2 A A  . . . fa ,  

• . . ,  U d _ l f  d, Ud)] -1 

and the preservation index of a hypernet family (hi, h2, 
. . . ,  ha) with GCD(h~, h2,.. . ,  hd) = 1 is given by 

cp = n[ f ~GCD( h~, h2A,  h 3 A A ,  .... h d A A  " " f d)] -~" 

Moreover, the lattice-preservation concept may be 
extended to lattice varieties whose dimension is 
intermediate between rows (dimension 1) and hypernets 
(dimension d -  1) (Rolley-Le Coz & Billiet, 1982). 

3. The enumeration of derivative and colored lattices 

The lattices L and L '  can be regarded as space groups 
of type P1. Since a'o = fao,  b'o = fgbo and c'o = fghco, it 
follows that L / L '  is isomorphic to a direct product of 
three cyclic groups of orders f ,  f g  and fgh .  These 
numbers can be interpreted as the preservation indices 
of L by L '  in the directions a0, b0, c o or, equivalently, as 
the number of colors in these rows. The number K of 
distinct classes of equivalent subgroups* L '  of a given 
index is equal to the number of ways in which L / L '  can 
be written as such a direct product. Senechal (1979) 
has shown that for the plane group p 1 the definition of 
equivalence for derivative lattices given in this paper 
coincides with the definition of equivalence for color 
groups. Since her argument is valid in any dimension, K 
is the number of color groups of n colors associated 
with P1. In this section we calculate this number. 

* The number of derivative lattices (not equivalence classes of 
lattices) has been found for any value of n (Billiet & Rolley-Le Coz, 
1980). 
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We first show that  the integers f ,  g and h determine 
the group C/ x C/g x Cfg h. First  we write f gh  as a 
product  of  distinct primes p~,3 p~,  . . .  p~,,, exa > 0. Then 
f g  can be written in the form p~,~ p ~  . . .  p~?~, where 0 < 
el2 _< eta. FinallY, f = "ell " e ~ , l  ~'2 . . . . . .  p~?,, and 0 < et~ < et2 < 
el3. The order of  the group C / x  Cfg x Cfg h is then fag2h  
= n = p~ ,p~ . . ,  pek~, where el = el~ + et2 + eia. 

I f  a and b are relatively prime then the direct product  
of  the cyclic groups C~ and C b of orders a and b is 
isomorphic to the cyclic group Ca~ , of  order ab. 
Therefore 

c f =  x x . . .  x 

Cfg=  Cp~,, X Cp~2 X ... X Cp~,,, 

and 

cf,,, = c,,f,, x c , , ,  x . . .  x c , , , .  

Since the factors  in a direct product  commute ,  we have 

Cf X Of, X Of& h -- (Cpf,, X Cp~,, X Cp~,,) 

x x x x . . .  

x x x 

The integers e u are called the invariants of  the group. 
A basic theorem in group theory says that  an Abelian 
group is completely character ized by its invariants,  
f rom which our assertion follows. 

It follows that  to enumerate  the classes of  equivalent 
derivative lattices of  index n, we need to know the 
number  of  ways  each e~ can be written as a sum of 
three non-negative integers e~l, e~2, e~3 with 0 < el~ < el2 
< el3 < e~. Let n3(e~) represent this number.  Then, 
since the parti t ions of  the e t are independent,  any one 
can be combined with any other. Thus the number  of  
ways  of  writing L / L '  as a direct product  of  three cyclic 
groups is equal to the product  n3(el) . . .  n3(ek). 

This a rgument  can easily be modified to hold for 
lattices in any dimension d. 

Example: Let L be a two-dimensional  lattice and L '  
a sublattice of  index n = 23 x 54 x 7 x 112 . In 
dimension 2, e t = et~ + el2 and so et2 = e t - etl. 
Assuming 0 < ell < et2 < e i, we obtain the following 
formula  for n2(ei): 

/ (el + 1)/2 if e I is odd 
n2(et) 

e l / 2 +  1 i re  t i seven .  

Thus n2(3) = 2, n2(4) = 3, n2(1) = 1 and n2(2 ) = 2. The 
product  of  these numbers  is 12, so there are twelve 
classes of  derivative lattices of  index n = 23 × 54 x 7 x 
112 . 

Unfor tunate ly  there is no simple formula* for nd(e l) 
except in the case d = 2. However ,  there is no difficulty 
in calculating nd(et) by hand if e t is not too large (or by 
computer  if it is). 

The authors  are grateful to D r  David  H a r k e r  for 
m a n y  fruitful remarks .  
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Abstract  

Incommensura te  modulated structures are no longer 
'perfect '  crystals in E 3, where E n is the n-dimensional 
affine Euclidian space;  on the other hand  they are 
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crystals  in E 4, ~-5 or E 6 whose cell is obtained f rom the 
experimental  diffraction pat tern in &-* 3. But Bragg 's  law 
is more  general and it is shown that  hyperplane incident 
waves are diffracted by sets of  lattice hyperplanes  of  
perfect crystals of  E n. 
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